224 research outputs found

    An F-ratio-Based Method for Estimating the Number of Active Sources in MEG

    Get PDF
    Magnetoencephalography (MEG) is a powerful technique for studying the human brain function. However, accurately estimating the number of sources that contribute to the MEG recordings remains a challenging problem due to the low signal-to-noise ratio (SNR), the presence of correlated sources, inaccuracies in head modeling, and variations in individual anatomy. To address these issues, our study introduces a robust method for accurately estimating the number of active sources in the brain based on the F-ratio statistical approach, which allows for a comparison between a full model with a higher number of sources and a reduced model with fewer sources. Using this approach, we developed a formal statistical procedure that sequentially increases the number of sources in the multiple dipole localization problem until all sources are found. Our results revealed that the selection of thresholds plays a critical role in determining the method`s overall performance, and appropriate thresholds needed to be adjusted for the number of sources and SNR levels, while they remained largely invariant to different inter-source correlations, modeling inaccuracies, and different cortical anatomies. By identifying optimal thresholds and validating our F-ratio-based method in simulated, real phantom, and human MEG data, we demonstrated the superiority of our F-ratio-based method over existing state-of-the-art statistical approaches, such as the Akaike Information Criterion (AIC) and Minimum Description Length (MDL). Overall, when tuned for optimal selection of thresholds, our method offers researchers a precise tool to estimate the true number of active brain sources and accurately model brain function

    Constant Modulus Algorithms via Low-Rank Approximation

    Get PDF
    We present a novel convex-optimization-based approach to the solutions of a family of problems involving constant modulus signals. The family of problems includes the constant modulus and the constrained constant modulus, as well as the modified constant modulus and the constrained modified constant modulus. The usefulness of the proposed solutions is demonstrated for the tasks of blind beamforming and blind multiuser detection. The performance of these solutions, as we demonstrate by simulated data, is superior to existing methods.This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF-1231216

    MEG Source Localization via Deep Learning

    Full text link
    We present a deep learning solution to the problem of localization of magnetoencephalography (MEG) brain signals. The proposed deep model architectures are tuned for single and multiple time point MEG data, and can estimate varying numbers of dipole sources. Results from simulated MEG data on the cortical surface of a real human subject demonstrated improvements against the popular RAP-MUSIC localization algorithm in specific scenarios with varying SNR levels, inter-source correlation values, and number of sources. Importantly, the deep learning models had robust performance to forward model errors and a significant reduction in computation time, to a fraction of 1 ms, paving the way to real-time MEG source localization

    Deep Recurrent Architectures for Seismic Tomography

    Full text link
    This paper introduces novel deep recurrent neural network architectures for Velocity Model Building (VMB), which is beyond what Araya-Polo et al 2018 pioneered with the Machine Learning-based seismic tomography built with convolutional non-recurrent neural network. Our investigation includes the utilization of basic recurrent neural network (RNN) cells, as well as Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) cells. Performance evaluation reveals that salt bodies are consistently predicted more accurately by GRU and LSTM-based architectures, as compared to non-recurrent architectures. The results take us a step closer to the final goal of a reliable fully Machine Learning-based tomography from pre-stack data, which when achieved will reduce the VMB turnaround from weeks to days.Comment: Published in the 81st EAGE Conference and Exhibition, 201

    Stochastic Opinion Dynamics under Social Pressure in Arbitrary Networks

    Full text link
    Social pressure is a key factor affecting the evolution of opinions on networks in many types of settings, pushing people to conform to their neighbors' opinions. To study this, the interacting Polya urn model was introduced by Jadbabaie et al., in which each agent has two kinds of opinion: inherent beliefs, which are hidden from the other agents and fixed; and declared opinions, which are randomly sampled at each step from a distribution which depends on the agent's inherent belief and her neighbors' past declared opinions (the social pressure component), and which is then communicated to their neighbors. Each agent also has a bias parameter denoting her level of resistance to social pressure. At every step, the agents simultaneously update their declared opinions according to their neighbors' aggregate past declared opinions, their inherent beliefs, and their bias parameters. We study the asymptotic behavior of this opinion dynamics model and show that agents' declaration probabilities converge almost surely in the limit using Lyapunov theory and stochastic approximation techniques. We also derive necessary and sufficient conditions for the agents to approach consensus on their declared opinions. Our work provides further insight into the difficulty of inferring the inherent beliefs of agents when they are under social pressure
    • …
    corecore